Two New Ergostane-Type Steroidal Lactones from Withania coagulans

Atta-ur-Rahman,* M. Iqbal Choudhary,* Samina Qureshi, Waseem Gul, and Muhammad Yousaf

International Center for Chemical Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

Received October 24, 1997

Two new withanolides (steroidal lactones) named coagulin F [27-hydroxy-14,20-epoxy-1-oxo-(22R)-witha-3,5,24-trienolide] (**1**) and coagulin G [17β ,27-dihydroxy-14,20-epoxy-1-oxo-(22R)-witha-2,5,24-trienolide] (**2**) were isolated from the whole plant of *Withania coagulans*, and their structures were deduced by spectral analysis.

Withania coagulans Dunal. (Solanaceae) is a small, evergreen shrub that is reputed to have been used as a remedy for dyspepsia, flatulent colic, and other intestinal diseases. The fruit is diuretic and has coagulating properties.^{1,2} These pharmacological activities have been attributed to withanolides that are present in this plant. In continuation of our work on the withanolidal constituents of *W. coagulans*,^{3–5} we report here the structure elucidation of coagulin F (1) and coagulin G (2). The identity of the new compounds was determined by using a combination of spectroscopic data including 2D-NMR techniques and chemical transformations.

The IR spectrum of coagulin F (C₂₈H₃₆O₅) (1) indicated the presence of a hydroxyl group (3400 cm⁻¹), a sixmembered cyclic ketone (1700 cm⁻¹), and an α . β unsaturated δ -lactone (1715 cm⁻¹).⁶ The UV spectrum of 1 exhibited absorption at 230 nm characteristic of an α,β -unsaturated δ -lactone chromophore.⁷ Positive FABMS showed a $[M + H]^+$ peak at m/z 453. The EI mass spectra of **1** showed the M⁺ at m/z 452.2493 analyzing for $C_{28}H_{36}O_5$ (calcd 452.2562), which possessed 11 degrees of unsaturation. Seven of these were accounted for by the pentacyclic α . β -unsaturated steriodal lactone skeleton, two were due to additional double bonds, and one was on account of the ketonic carbonyl. The remaining unsaturation site can be accommodated as a α -oriented cyclic ether.³ The peak at m/z 141.0654 $(C_7H_9O_3)$ resulting from cleavage of the C-20/C-22 bond indicated the presence of a six-membered lactone substituent at C-20.8

The ¹H NMR spectrum (400 MHz, DMSO- d_6) of **1** closely resembled that of the reported withanolide

coagulin (3) and indicated the presence of a 1-oxo-3,5diene system in rings A and B of the steroidal skeleton and an α,β -unsaturated δ -lactone in the side chain.³ The four methyl groups resonated as singlets at δ 0.93, 1.15, 1.28 and 2.01. Two mutually coupled olefinic signals resonating at δ 5.61 (multiplet) and δ 6.02 (dd, $J_{4,3}$ = 10.2 Hz, $J_{4,2} = 2.2$ Hz) were assigned to C-3 and C-4 vinylic protons, respectively. Another downfield olefinic signal resonating at δ 5.66 (dd, $J_{6,7a} = 5.2$ Hz, $J_{6,7b} =$ 2.1 Hz) showed COSY 45° couplings to two protons of a C-7 methylene group (δ 2.20 and 1.86) and was assigned to the C-6 vinylic proton. The H-22 signal at δ 4.05 (dd, $J_{22,23a} = 12.5$ Hz, $J_{22,23b} = 4.0$ Hz) exhibited crosscorrelation peaks in the COSY spectrum only with the H-23 signals at δ 2.40 and 2.05. Downfield AB doublets resonating at δ 4.19 and 4.12 ($J_{27,27'}$ = 11.5 Hz) were due to the C-27 hydroxymethylene protons, which shifted downfield to δ 4.88 and 4.86 in its monoacetate. The configuration of C-22 was assumed to be R on biogenetic grounds as found in related withanolides.⁹

The ¹³C NMR spectra (BB and DEPT) showed the presence of four methyl, eight methylene, seven methine, and nine quaternary carbon signals. A notable feature was the appearance of downfield signals for the quaternary carbons at δ 82.4 and 74.7, which were assigned to the α -oriented epoxy bearing C-14 and C-20, respectively.^{3,10} Assignments of all the functional groups were acheived by HMQC and HMBC experiments^{11,12} and by comparison with similar withanolides.³ These spectroscopic data led to structure **1** for coagulin F.

The EIMS of 2 afforded the M⁺ at m/z 468.2538 corresponding to the molecular formula C₂₈H₃₆O₆ (calcd 468.2511). The IR spectrum showed absorptions for hydroxyl, ketonic carbonyl, and α,β -unsaturated δ -lactone groups, respectively, at 3350, 1695, and 1712 cm^{-1} . The presence of α,β -unsaturated δ -lactone was also inferred from the UV absorption at 226 nm.⁷ The ¹H NMR spectrum of **2** resembles that of **1** with major differences being the presence of a downfield multiplet at δ 6.75, a double doublet at δ 5.87 ($J_{2,3} = 10.2$ Hz, $J_{2,4\beta} = 2.3$ Hz), and another double doublet centered at δ 5.60 ($J_{\rm 6,7a}$ = 5.1 Hz, $J_{\rm 6,7b}$ = 1.9 Hz), which indicated the presence of a 2,5-dien-1-one system in rings A and B of withanolide.⁵ The ¹³C NMR spectrum showed a downfield signal at δ 204.1 that was due to the α,β unsaturated carbonyl carbon.¹³ An additional downfield signal at δ 79.1 was assigned to an oxygen-bearing C-17 carbon³ that was observed at δ 48.9 in **1**. The stereochemistry at C-17 was inferred to be β (*S*) based on the fact that the alternative arrangement (*R*) was not possible when an α -oriented ether bridge exists between C-14/C-20.¹⁰ On the basis these spectral observations, structure **2** was deduced for coagulin F.

The crude extract of *W. coagulans* showed antifungal activity,⁴ but coagulins F and G did not show significant antifungal activity.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a JASCO DIP-360 polarimeter. IR spectra were recorded on a JASCO 302-A spectrophotometer. UV spectra were recorded on a Hitachi U 3200 spectrophotometer. EI, FAB, and HREI MS were recorded on JMS HX 110 with a data system and on JMS-DA 500 mass spectrometers. The ¹H NMR spectra were recorded on Bruker spectrometers operating at 500 and 400 MHz and ¹³C NMR spectra at 125 and 100 MHz. The chemical shift values are reported in ppm (δ) and the coupling constants (*J*) in Hz. Standard pulse sequences were used for COSY, DEPT, HMQC, and HMBC experiments.

Chromatographic Conditions. Column chromatography: silica gel, 230-400 mesh. TLC: precoated silica G-25, UV₂₅₄ plates. Visualization of the TLC plates was achieved at 254 and 366 nm, and Dragendorff's spray reagent was used for detection.

Plant Material. The whole plant of *W. coagulans* Dunal. (Solanaceae) was collected from the suburban areas of Karachi (Pakistan) in April 1991. The plant material was identified by Mr. Tahir Ali, plant taxonomist, Department of Botany, University of Karachi. A voucher specimen was deposited in the herbarium (KUH-46528) of Karachi University.

Extraction and Isolation. The dried plant (25 kg) was extracted with EtOH at room temperature for 2 weeks, and the resulting extract was concentrated to a gum. This gum (1.0 kg) was partitioned between *n*-hexane and MeOH. The defatted MeOH extract was evaporated and dissolved in H₂O. The aqueous extract was extracted with CHCl₃ at different pH values (pH 9–10 and pH 2–3), the pH being adjusted by the addition of NH₄OH and AcOH solutions. The fraction (pH 9–10) was subjected to column chromatography on silica gel. Elution with CHCl₃ and then with CHCl₃– MeOH yielded several fractions. A fraction obtained on elution with CHCl₃ was found to contain two compounds (**1** and **2**). These were purified by TLC (silica gel) using CHCl₃–MeOH (99.8:0.2) as the solvent system.

27-Hydroxy-14,20-epoxy-1-oxo-22(*R*)-witha-3,5,24**trienolide** (**coagulin F**) (1): greenish solid; yield 1.5 $\times 10^{-4}$ %; $R_f = 0.45$; $[\alpha]^{25}_D + 112^\circ$ (CHCl₃, c = 0.26); UV λ_{max} (MeOH) 230 nm (ϵ 18 600); IR ν_{max} (CHCl₃) 3400, 1715, 1700 cm⁻¹; ¹H NMR (DMSO- d_6 , 400 MHz) δ 6.02 (1H, dd, J = 10.2, 2.2 Hz, H-4), 5.66 (1H, dd, J = 5.2, 2.1 Hz, H-6), 5.61 (1H, m, H-3), 4.19, 4.12 (2H, AB d, $J_{27,27'} = 11.5$ Hz, H-27), 4.05 (1H, dd, J = 12.5, 4.0 Hz, H-22), 2.01 (3H, s, H-28), 1.28 (3H, s, H-19), 1.15 (3H, s, H-21), 0.93 (3H, s, H-18); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 210.1 (C-1), 165.0 (C-26), 154.0 (C-24), 140.4 (C-5), 128.7 (C-4), 127.4 (C-3), 125.5 (C-25), 121.6 (C-6), 82.4 (C-14), 81.3 (C-22), 74.7 (C-20), 54.5 (C-27), 48.9 (C-17), 48.8 (C-10), 47.1 (C-13), 39.4 (C-2), 33.6 (C-8), 33.2 (C-9), 31.8 (C-23), 31.5 (C-7), 30.2 (C-16), 29.7 (C-15), 25.2 (C-12), 21.9 (C-11), 20.7 (C-28), 19.8 (C-21), 19.7 (C-18), 16.3 (C-19); FABMS $[M + H]^+ m/z$ 453; EIMS m/z (rel int) $[M^+]$ 452 (7), 311 (9), 185 (20), 141 (15), 124 (99), 96 (100).

Acetylation of 1. A solution of 1 (10 mg) in pyridine (1 mL) was treated with Ac₂O (1 mL) and left overnight at room temperature. The reagents were removed in vacuo, and the residue was crystallized from Me₂CO–hexane as fine needles: $[\alpha]^{25}_{D} + 106^{\circ}$ (CHCl₃, c = 0.3); IR ν_{max} (CHCl₃) 1720, 1710, 1680, 1240, 1225 cm⁻¹; UV λ_{max} (MeOH) 228 (ϵ 18 400); ¹H NMR (CDCl₃, 400 MHz) δ 6.01 (1H, dd, J = 10.2, 2.1 Hz, H-4), 5.66 (br d, J = 6 Hz, H-6), 5.60 (1H, m, H-3), 4.88, 4.86 (2H, AB d, $J_{27,27'} = 12$ Hz, H-27), 4.20 (1H, dd, J = 13, 3.5 Hz, H-22), 2.07 (3H, s, COC H_3 -27), 2.04 (3H, s, H-28), 1.61 (3H, s, H-19), 1.38 (3H, s, H-21), 1.24 (3H, s, H-18); FABMS [M + H]⁺ m/z 495; EIMS m/z (rel int) [M⁺] 494 (7), 416 (10), 210 (45), 124 (100).

 17β , 27-Dihydroxy-14, 20-epoxy-1-oxo-22(*R*)-witha-**3,5,24-trienolide (coagulin G) (2):** white powder: yield 1.6 × 10⁻⁵%; $R_f = 0.33$; [α]²⁵_D +60° (CHCl₃, c =0.3); UV λ_{max} (MeOH) 226 nm (ϵ 18 000); IR ν_{max} (CHCl₃) 3350, 1712, 1695 cm $^{-1};$ $^1\mathrm{H}$ NMR (CDCl_3, 500 MHz) δ 6.75 (1H, m, H-3), 5.87 (1H, dd, J = 10.2, 2.3 Hz, H-2), 5.60 (1H, dd, J = 5.1, 1.9 Hz, H-6), 4.64(1H, dd, J =12.5, 3.5 Hz, H-22), 4.38, 4.34 (2H, AB d, J_{27,27} = 12.5 Hz, H-27), 2.03 (3H, s, H-28), 1.32 (3H, s, H-21), 1.24 (3H, s, H-18), 1.07 (3H, s, H-19); ¹³C NMR (CDCl₃, 125 MHz) & 204.1 (C-1), 166.3 (C-26), 155.0 (C-24), 145.1 (C-3), 136.5 (C-5), 128.0 (C-2), 124.5 (C-25), 124.4 (C-6), 88.0 (C-14), 81.4 (C-22), 79.1 (C-17), 76.4 (C-20), 57.5 (C-27), 50.7 (C-13), 50.0 (C-10), 36.2 (C-9), 33.6 (C-8), 36.1 (C-8), 33.2 (C-4), 32.9 (C-7), 31.8 (C-16), 29.6 (C-23), 29.5 (C-15), 26.6 (C-12), 22.9 (C-11), 20.5 (C-28), 19.4 (C-21), 18.9 (C-18), 14.0 (C-19); FABMS [M + H]⁺ m/z 469; EIMS m/z (rel int) [M⁺] 468 (6), 327 (8), 141 (25), 124 (100).

Acetylation of 2. Acetylation of **2** was carried out (as described for **1**) to obtain the monoacetate: $[\alpha]^{25}_{D}$ +46° (CHCl₃, c = 0.35); IR ν_{max} (CHCl₃) 3400, 1730, 1710, 1690 cm⁻¹; UV λ_{max} (MeOH) 226 (ϵ 18 500); ¹H NMR (CDCl₃, 500 MHz) δ 6.80 (1H, m, H-3), 5.88 (1H, dd, J = 10.2, 2.4 Hz, H-2), 5.71 (br d, J = 6.2 Hz, H-6), 4.90, 4.88 (2H, AB d, $J_{27,27'} = 12.1$ Hz, H-27), 4.68 (1H, dd, J = 12.4, 4.0 Hz, H-22), 2.10 (3H, s, COCH₃-27), 2.08 (3H, s, H-28), 1.36 (3H, s, H-21), 1.25 (3H, s, H-18), 1.08 (3H, s, H-19); FABMS [M + H]⁺ m/z 511; EIMS m/z (rel int) [M⁺] 510 (3), 492 (10), 432 (12), 228 (40), 96 (100).

Acknowledgment. This work was supported by a grant from Pakistan Science Foundation [PSF/NSFC/ RES(3)/CHEM]. Thanks are also due to Mr. Tahir Ali, plant taxonomist, Department of Botany, University of Karachi, for identication of the plant material.

References and Notes

- (1) Watt, G. A. *Dictionary of the Economic Products of India*, Cosmo Publications: Delhi-6, India, 1972; Vol. 6, p 309.
- (2) Chadha, Y. R. *The Wealth of India*; Publications and Information Directorate, CSIR: New Delhi, India, 1976; Vol. X, p 580.
- (3) Atta-ur-Rahman; Abbas, S.; Dur-e-Shahwar; Jamal, S. A.; Choudhary, M. I. *J. Nat. Prod.* **1993**, *56*, 1000–1006.
- (4) Choudhary, M. I.; Dur-e-Shawar; Parveen, Z.; Jabbar, A.; Ali, I.; Atta-ur-Rahman, *Phytochemistry* 1995, 40, 1243–1246.

- (6) Attachman, Shaboh, M., Du Pershama, Chouding, M. I.; Voelter, W. and Hohnholz, D. *Heterocycles*, in press.
 (6) Pavia, D. L.; Lampman, G. M.; Kriz, G. S. *Introduction to Spectroscopy*, Saunders College Publishing Co.: Philadelphia, 1997.
- Spectroscopy, Saunders College Publishing Co.: Finaderpina, 1979; p 41.
 (7) Scott, A. I. Interpretation of the Ultraviolet Spectra of Natural Products; Pergamon Press: Oxford, 1964; p 64.
 (8) Atta-ur-Rahman; Jamal, S. A.; Choudhary, M. I.; Asif, E. Phytochemistry 1991, 30, 3824–3826.
 (9) Glotter, E. Nat. Prod. Rep. 1991, 8, 415–440.

- Kirson, I.; Gunzberg, G.; Gottlieb, H. E.; Glotter, E. J. Chem. Soc., Perkin Trans. 1 1980, 531–534.
 Atta-ur-Rahman. One- and Two-dimensional NMR Spectroscopy; Elsevier Science Publishers: Amsterdam, 1989; p 269.
 Atta-ur-Rahman; Choudhary, M. I. Solving Problems with NMR Spectroscopy; Academic Press: San Diego, 1996; p 271.
 Ray, A. B.; Gupta, M. Prog. Chem. Org. Nat. Prod. 1994, 63, 1–106.

NP970478P